Modeling Neurodevelopmental Disorders: From Mouse Mutants to Human Induced Neural Stem Cells

Emanuel DiCicco-Bloom, M.D.
Rutgers Robert Wood Johnson Medical School
Neuroscience & Cell Biology
Pediatrics (Child Neurology & Neurodevelopmental Disabilities)

Autism Science Foundation: Scientific Advisory Board
International Meeting for Autism Research
International Rett Syndrome Foundation: Scientific Review Panel
Autistica, United Kingdom: Scientific Advisory Board
Simons Foundation
Society for Neuroscience
Dana Foundation

Brain Health Institute Symposium
St. Peter’s University, Jersey City, NJ
October 26, 2015

National Institutes of Child Health and Human Development (NICHD), Neurological Disorders and Stroke (NINDS), Environmental Health and Safety (NIEHS) and Mental Health (NIMH)
United States Environmental Protection Agency
National Alliance for Autism Research (NAAR)
Autism Science Foundation
New Jersey Governor’s Council for Medical Research and Treatment of Autism
Hallmark Feature - Abnormal Social Interaction

Figure 5. Example fixation patterns from study 1 using the iView tracking system. RT Schultz et al, 2000
Functional MRI studies in typical and autistic individuals – Altered long distance connectivity!

Allen and Courchesne, 2003
Autism Spectrum Disorders (ASD)- DSM-5

Diagnostic Criteria

A. Persistent deficits in social communication and social interaction across multiple contexts

B. Restricted, repetitive patterns of behavior, interests, or activities

C. Present in early developmental period (Recognized 12–24 months)

D. Significant impairment in social, occupational, or other functioning

E. Not better explained by intellectual disability or global delay

Specifiers:
+/- intellectual impairment
+/- language impairment
+/- genetic, medical, environmental factor-FXMR, Tuberous Sclerosis, Rett, Epilepsy, VPA (Depakene), Very Low Birth Weight

Co-Morbidity: 70% with one and 40% with two!
Anxiety & Mood(>60%), Epilepsy (30%), ID (65%), ADHD, OCD
Etiological Factors in Neurodevelopmental Disorders

“The Autisms”

Many genes (500-1000) but fewer common pathways
developmental genes, synaptic molecules, chromatin modifiers

Genetic Factors- Family studies, GWAS, CNV

X

Environmental factors- Maternal and external

Causes and symptoms may overlap with many disorders
Schizophrenia, bipolar depression, intellectual disability
Synthesis of Results of Genetic Architecture of ASD

- Rare variants - large effects
- Common variants - small effects
- Genetic background on which other factors act?

Gaugler, Buxbaum and colleagues, 2014
Our Approach to Study Autism Etiologies

Using animal and human systems

Genes
- Common variant: Engrailed-2
- Rare variant
- **Idiopathic**
 - CNV 16.p11.2 (1%)

Environment
- **Developmental**
 - Growth Factors
 - Inflammation
 - ROS/Mitochondria
 - H$_2$O$_2$, MeHg

- **Chemical**
 - Drugs
 - VPA
 - Air Pollution

Define molecular pathways to design therapeutic interventions
DEVELOPMENTAL Brain Abnormalities in Autism

Developmental Genes?

Brain Growth – Proliferation, Survival
- accelerated brain growth rate in first years, then stabilizes
- increased head circumference
- enlarged cerebral cortex, amygdala and cerebellum; grey & white matter

Cerebral Cortex – Proliferation, Differentiation and Migration
- disorganized neuronal layers and misdirected pyramidal neurons
- increase in neuron number and density/ others show decreases!
- neuron columns are smaller in size (mini-columns)
- ectopic neurons and dysplastic regions
- increases in dendritic spines

Cerebellum – Proliferation, Survival
- reduced numbers of Purkinje neurons

 ![Engrailed-2](image_url)
- decreased vermis
- increased size of hemispheres

Approximately 15-20% of individuals with ASD have macrocephaly

Neural Systems: Abnormalities in transmitters, synapses and connectivity
Cerebellar Growth In Vivo

Mouse

Wild Type (WT) Engrailed-2 Knockout (KO)

Millen et al. 1994

Human

Normal

Autism

Courchesne et al.
ENGRAILED 2 (EN2) is a transcription factor that can repress gene expression.

En2 functions in pre- and post-natal brainstem and cerebellar patterning when circuits develop.

En2 deletion as well as *over-expression* reduce Purkinje neurons and granule cells.

ENGRAILED 2 gene structure

![Gene Structure Diagram]
Engrailed 2 gene is expressed in the back of the embryonic brain where monoamine neurons originate.

Monoamine neurotransmitters
Serotonin, Dopamine, Norepinephrine

(Sgaier et al., 2007)
Roles of monoamine neurotransmitters in forebrain behaviors

Norepinephrine – Locus Coeruleus
- modulates attention, behavioral performance, sleep-wake states and mood

Serotonin – Raphe
- roles in mood, obsessive-compulsive signs and aggression

Dopamine – Mesolimbic
- reward, repetitive & obsessive behaviors, attention movement

Roles of Monoamines in Forebrain Development?
Proliferation, survival, differentiation
Social behavior in mice – preference for another mouse. *Engrailed-2* mutants do not prefer another mouse!
Learning and remembering where things are in space!
Multiple behaviors are abnormal in En2 mutants

Many behaviors reflect forebrain circuits

Depression-like behavior
 Monoamines

Social interactions in adolescence and adulthood
 Same sex juvenile dyads, opposite sex adults
 Hippocampus, hypothalamus, amygdala, striatum

Spatial learning
 Novel object recognition
 Fear learning in different environments
 Hippocampus, thalamus, amygdala, cerebellum

Sensory gating
 Sensory-motor cortex, thalamus

Grip strength, rotarod performance
 Cerebellum, thalamus, cortex
 Brielmaier et al., 2012, 2014
Model: Can changes in hindbrain monoamine systems impact forebrain development?

Forebrain Development - Growth Function

Engrailed-2

Norepinephrine
Serotonin
Dopamine

Hindbrain Genes – Neurons
Norepinephrine levels are abnormally distributed in the En2 mutant mouse at adolescence!

Genestine et al, Hum Mol Genet, 2015
Brain growth abnormalities in *En2* mutants

Brain region weight (mg)

<table>
<thead>
<tr>
<th></th>
<th>Hippo</th>
<th>Striatum</th>
<th>Forebrain</th>
<th>Hindbrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Decrease</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Jacob Ellegood
Hippocampal dentate gyrus has 16% fewer neurons in *En2 KO*

Genestine et al, Hum Mol Genet, 2015
Tyrosine hydroxylase (TH) levels are altered in brain regions in parallel with NE.

TH is the rate limiting enzyme in NE biosynthesis.

Genestine et al, Hum Mol Genet, 2015
Norepinephrine (TH) nerve fibers from Locus Coeruleus are reduced in hippocampus CA1-3 DG GCL
Cell death and proliferation are increased in the hippocampus of En2 mutants

Genestine et al, Hum Mol Genet, 2015
Intra-hippocampal injections of NE agonists at P21

Genestine et al, Hum Mol Genet, 2015
Desipramine (NE enhancer) repairs adult social interactions

“Taking these drugs caused me to look at myself in a whole new light,”

Brielmaier et al, *Genes, Brain and Behavior* 2014
Desipramine (NE enhancer) repairs depression-like behavior

“Taking these drugs caused me to look at myself in a whole new light,”

Tail Suspension

Also Forced Swim

Brielmaier et al, Genes, Brain and Behavior 2014
Insights from study of common variant Engrailed-2

Changes in Neuronal Connections between brain regions

Changes in Synapses and Neurotransmitter Systems

Hindbrain developmental gene effects on the forebrain - common path?
Altered connectivity of hindbrain to forebrain- Rett (LC), Tuberous Sclerosis, FXS

Monoamine neurotransmitter systems
Monoamine metabolism- MAO A/B, COMT, VMAT, 5HTT
Depression, schizophrenia, Disc1, Rett, Timothy syndrome, ASD, VPA

Abnormal neurogenesis- pathological mechanism vs biomarker
Depression, schizophrenia, epilepsy, Tsc, FMR1, Rett, PTEN; ASD?

Question: Do common variants that have small effect provide a background vulnerability on which other rare variants or environmental factors act?
Human induced pluripotent stem cells (iPSC)

Proliferation
Differentiation
Neurite Outgrowth

Patient
Blood cells

Personalized Medicine
Effective
Drug screen
Mechanistic study

Novel Therapy

NPCs

iPS cells

WBCs

neurons

disease modeling

Personalized Medicine
New Jersey Autism Center of Excellence (NJACE) Grant
Jim Millonig, PI and colleagues

- Population created by Linda Brzustowicz
- Criteria
 - 1 autism child and 1 unaffected sibling
 - 1 family member w/ Specific Language Impairment (SLI)
- 8 Families
 - 16 patients total
Converting T Cells to iPSCs
Growing NSCs as a monolayer in Neural Induction Media---Gibco/Invitrogen

We receive cells at passage 3 and begin our analysis at this time
Acknowledgements:
This work is part of a special collaboration between Drs. DiCicco-Bloom, Millonig, Brzustowicz

Robert Wood Johnson Medical School
Mattieu Genestine
Lulu Lin
Madeline Williams
Smrithi Prem
Ian T. Rossman
Xiaofeng Zhou
Jason Lunden
Robert Connacher
Madel Durens

James H. Millonig
Ryma Benayed
Silky Kamdar
Paul Matteson

Child Health Institute
Che Wei Lu
Zhiping Pang

Rutgers University
Linda M. Brzustowicz
Neda Gharani
Judy Flax

Elizabeth Torres

NIMH – MIND Institute
Jacqueline N. Crawley
Jill Silverman
Jennifer Brielmaier

Hospital for Sick Children
Mark Henkelman
Jacob Ellegood