Relapse to Cocaine Binge: a Behavioral Trap?

Mark West
Department of Psychology
New Brunswick

Research: Neural bases of
- cocaine addiction
- disorders involving binge eating
A quick reflection on Rutgers’ past 50 years-
How did we get to where we are?
1970 – NJ Governor declares that community health care must have priority over research. He saw no reason why research should be conducted by faculties of medical schools.

He asks the state legislature to consolidate Rutgers University Medical School (RMS) and the New Jersey College of Medicine and Dentistry (NJCMD, formerly the failing Seton Hall Medical School) for the purpose of delivering general practitioners to city clinics throughout the state.

1 month later The Medical and Dental Education Act of 1970 removes RMS from its University setting in Rutgers, merging RMS with NJCMD into the College of Medicine and Dentistry of New Jersey, and later to be renamed UMDNJ, signed into law by the Governor.

2 days later
- Dean Stetten resigns and later became Deputy Director of NIH.
- Four department chairs, of Medicine, Surgery, Biochemistry and Psychiatry, and many faculty at RMS resign.

Ron Morris, M.D.
It was difficult to put back together, but here we are, with world-class leadership in neuroscience, and high hopes for our future.
My lab’s interest: the mechanisms that drive cocaine self-administration, both during cocaine **binge** and **relapse** to cocaine taking.

We are guided by the many studies implicating the brain’s mesolimbic **dopamine** system.
The mesolimbic DA system projects most heavily to the nucleus accumbens. Nauta (1978) hypothesized that the limbic system gains access to the motor system via the accumbens.

![Diagram of the brain with labeled structures and progression of signals](image)
The anatomical connections do appear to “spiral” toward the motor system.

Accumbens DA transmission:
- stimulated by rewards
- necessary for cocaine self-administration (Roberts)
Therefore, we record activity of accumbens neurons during:

1. cue-induced relapse model (Part One of talk)

2. self-administration binge (Part Two of talk)
Part One: Relapse

Tone discrimination

Lever press produces cocaine infusion only if tone is on.

(6 hrs/day, 7 days/wk)
Accumbens neurons show short-latency responses to the cocaine cue.
high responders to cue

low responders to cue

Relative to core neurons, shell firing:

- discriminated the cocaine cue from a neutral tone
- was correlated with degree of drug seeking
Core neurons showed much stronger phasic firing during the operant response than shell neurons.

Together with shell’s cue responsiveness, these data are consistent with a spiral flow of information from medial-to-lateral striatum, toward the motor system.
Part Two

During a cocaine self-administration binge, we have recorded a repeating pattern of neural activity in the basal forebrain.

Ultrasonic vocalizations (USVs) enlighten the interpretation of this pattern.
Cocaine self-administration binge

FR1: each operant response produces a cocaine infusion.

6 hours/day
7 days/week

Animals live 24/7 in the self-administration chamber.
Operant device
1. Sequence of lever presses
2. Calculated drug level (one session)

Animals “titrate” their cocaine level.

Binge behavior: The animal’s goal appears to be to maintain cocaine at its satiety level.

Gerber and Wise, 1988
Yokel and Pickens (1973) showed that each self-infusion occurs at the LOW ("threshold") level of drug.
Self-infusion cycle is 6 - 7 minutes.

Animals are able to discriminate their cocaine level.

Therefore, there must be some neurons that enable rats to do this.
A prime candidate:

“Progressive reversal”

the most prominent firing pattern we have observed in accumbens
Progressive reversal firing pattern
The *progressive reversal* firing pattern:

- duration of reversal is significantly correlated with inter-infusion interval

- firing rate is significantly correlated with calculated cocaine level

- may transduce low cocaine levels into neural signals that promote drug seeking

(Peoples and West, 1996)
Can ultrasonic vocalizations enlighten our interpretation of firing patterns?
Rat Ultrasonic Vocalizations (USVs)

Two Ranges:

Negative affect
- 22-kHz range (18-32.99 kHz)
 - (predator; footshock)

Positive affect
- 50-kHz range (38-80 kHz)
 - (social play; reward cues)

(noise)
Hypothesis:

- 22 kHz calls are emitted during sub-satiety
- 50 kHz calls are emitted during satiety

To test this, we "clamped" cocaine levels above or below each animal's satiety level in the middle of an S-A session, by experimenter-administered “i.v. drip”.
Typical cocaine accumulation curves of one animal
Interpretation: sub-satiety is an aversive state (akin to hunger).

Drug-seeking during the binge involves negative reinforcement.
If the drug binge involves a negative emotional state, why does relapse occur?
Answer: **Start** of binge (“load-up”) involves positive affect. Negative affect disappears (temporarily).

Barker et al, Psychopharmacology, 2013
22 kHz (negative affect)
50 kHz (positive affect)
Neurobiology of cocaine abuse: reinforcement?

Does cocaine self-administration (binge behavior) involve

• positive reinforcement? does the euphoria fade over long-term abuse? (Berridge)

• negative reinforcement? take another dose to escape dysphoria? (Koob)
Progressive reversal firing patterns occur in major dopamine target areas

- accumbens
- olfactory tubercle
- ventral pallidum
- lateral preoptic nucleus

These areas connect to the VTA, in turn connected to the lateral habenula, where excitation is associated with aversion.

Thus at low drug level: a crescendo of aversive signals may drive the next drug seeking response.
Interpretations:

• Load-up involves **positive reinforcement**, because 50kHz calls increase while 22kHz calls cease.

• Positive affect is experienced even **after chronic** drug use. This disagrees with the idea that “liking” has faded out.

• But the entire remainder of the binge lacks any evidence of positive affect. Instead, only negative calls occur each time drug level falls.

• Each fall in drug level appears to be experienced as beginning **withdrawal**, an aversive state.
Interpretations

• Thus, relapse can involve craving the euphoric rush of load-up.

• But after the fleeting positive affect is gone, the subject is trapped because each fall in drug level is aversive and compels taking another infusion.

• This may resemble a drive state, or an irritant the subject tries to escape, via another infusion of cocaine, i.e., negative reinforcement.

• Relapse also can involve an attempt to escape negative affect, as in stress-induced relapse.
Interpretations

- The results support the opponent-process hypothesis of addiction: relapse can be motivated by the lure of a positive “rush” during loading, which is quickly followed by being “trapped” by aversive feelings of withdrawal each time drug level starts to fall.

- Thus understanding mechanisms underlying negative affect may inform behavioral and pharmacological therapies.